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Talk Takeaways

1. First a deep learning primer!

2. Different types of neural networks encode 
assumptions about specific data types.

3. Data types in the physical sciences are 
geometry and geometric tensors.

4. Neural networks with Euclidean symmetry can 
natural handle these data types.
a. How they work
b. What they can do



A brief primer on deep learning

deep learning ⊂ machine learning ⊂ artificial intelligence

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets 3

Skip?



model (“neural network”):
Function with learnable parameters.
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A brief primer on deep learning



model (“neural network”):
Function with learnable parameters.

Linear 
transformation

Element-wise 
nonlinear 
function

Learned
Parameters

Ex: "Fully-connected" 
network
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A brief primer on deep learning



model (“neural network”):
Function with learnable parameters.

Neural networks with multiple layers 
can learn more complicated functions.

Learned
Parameters
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Parameters
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deep learning:
Add more layers.
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A brief primer on deep learning



data:
Want lots of it. Model has many parameters. Don't want to easily overfit.

https://en.wikipedia.org/wiki/Overfitting
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A brief primer on deep learning



cost function:
A metric to assess how well the model is performing. 
The cost function is evaluated on the output of the model.
Also called the loss or error.
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A brief primer on deep learning



way to update parameters:
Construct a model that is differentiable 

Easiest to do with differentiable programming frameworks: e.g. Torch, TensorFlow, JAX, ...
Take derivatives of the cost function (loss or error) wrt to learnable parameters.
This is called backpropogation (aka the chain rule).

error
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A brief primer on deep learning



http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

12

A brief primer on deep learning



model  |   deep learning  |  data  |  cost function  |  way to update parameters  |  conv. nets

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

convolutional neural networks:
Used for images. In each layer, scan over image with learned filters.

13

A brief primer on deep learning Back
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Neural networks are specially designed for different data types. 
Assumptions about the data type are built into how the network operates. W x



15

Neural networks are specially designed for different data types. 
Assumptions about the data type are built into how the network operates.

Arrays ⇨ Dense NN 2D images ⇨ Convolutional NN Text ⇨ Recurrent NN

Components are independent. The same features can be found 
anywhere in an image. Locality.

Sequential data. Next 
input/output depends on 
input/output that has come 
before.

W x
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Neural networks are specially designed for different data types. 
Assumptions about the data type are built into how the network operates.

Arrays ⇨ Dense NN 2D images ⇨ Convolutional NN Text ⇨ Recurrent NN

Components are independent. The same features can be found 
anywhere in an image. Locality.

Sequential data. Next 
input/output depends on 
input/output that has come 
before.

What are our data types in the physical sciences? 
How do we build neural networks for these data types?

W x
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Given a molecule and a rotated copy, 
we want the predicted forces to be the same up to rotation.
(Predicted forces are equivariant to rotation.)
Additionally, we should be able to generalize to molecules with similar motifs.
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Primitive unit cells, conventional unit cells, and supercells of the same crystal 
should produce the same output (assuming periodic boundary conditions).
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We want the networks to be able to predict molecular Hamiltonians in any 
orientation from seeing a single example.

O
1s 2s 2s 2p  2p  3d

H
1s 2s 2p

H
1s 2s 2p
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What our our data types? 
3D geometry and geometric tensors...
...which transform predictably under 3D rotation, translation, and inversion.

These data types assume Euclidean symmetry.
⇨ Thus, we need neural networks that preserve Euclidean symmetry.



21

Analogous to... the laws of (non-relativistic) physics have Euclidean symmetry, 
even if systems do not.

The network is our model of “physics”. The input to the network is our system.

q

B q

q q

q
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A Euclidean symmetry preserving network produces outputs that preserve 
the subset of symmetries induced by the input.

O(3) Oh Pm-3m
(221)

SO(2) + 
mirrors

(C∞v)

3D rotations and 
inversions

2D rotation and 
mirrors along 
cone axis

Discrete rotations 
and mirrors

Discrete rotations, 
mirrors, and translations
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Geometric tensors take many forms. They are a general data type beyond materials.
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Scalars
● Energy
● Mass
● Isotropic *

Vectors
● Force
● Velocity
● Acceleration
● Polarization

Pseudovectors
● Angular momentum
● Magnetic fields

Matrices, Tensors, …
● Moment of Inertia
● Polarizability
● Interaction of multipoles
● Elasticity tensor (rank 4)

m

Atomic orbitals

Output of 
Angular 
Fourier 
Transforms

Vector fields on 
spheres 
(e.g. B-modes 
of the Cosmic 
Microwave 
Background)

Geometric tensors take many forms. They are a general data type beyond materials.
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Geometric tensors only permit specific operations.
(More about these later -- scalar operations, direct sums, direct products)
Neural networks that only use these operations are equivariant 
to 3D translations, rotations, and inversion.

Equivariant vs. Invariant? Examples for a vector.

The location of a vector in 
space is equivariant to 
translation and equivariant 
to rotation.

The direction of a vector 
is invariant to translation 
and equivariant to 
rotation.

The magnitude of a vector 
is invariant to rotation and 
translation.
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Why limit yourself to equivariant functions? 
You can substantially shrink the space of functions you need to optimize over.
This means you need less data to constrain your function.

All learnable functions

All learnable 
equivariant 
functions

All learnable 
functions 
constrained 
by your data.

Functions you 
actually wanted 
to learn.
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Why not limit yourself to invariant functions? 
You have to guarantee that your input features already
contain any necessary equivariant interactions (e.g. cross-products).

All learnable 
equivariant 
functions

Functions you actually 
wanted to learn.All learnable 

invariant 
functions.

All invariant 
functions 
constrained by 
your data.

OR
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Building Euclidean Neural Networks
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The input to our network is geometry and features on that geometry.



30

The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation.

Features have “angular frequency” L 
where L is a positive integer.

Scalars

Vectors

3x3 Matrices

Frequency

Doesn’t change 
with rotation

Changes with 
same frequency 
as rotation
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The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation.

Features have “angular frequency” L 
where L is a positive integer.

Scalars

Vectors

3x3 Matrices

Frequency

Doesn’t change 
with rotation

Changes with 
same frequency 
as rotation



Convolutional filters based on learned radial functions and spherical harmonics.

=

Euclidean Neural Networks are similar to convolutional neural networks, 
EXCEPT with special filters and tensor algebra!



Everything in the 
network is a 
geometric tensor!

Scalar multiplication 
gets replaced with 
the more general 
tensor product.

Contract two indices 
to one with 
Clebsch-Gordan 
Coefficients.

Dot 
product

Cross
product

Outer 
product

Example: How do you “multiply” two vectors?

Scalar,
Rank-0

Vector, 
Rank-1

Matrix,
Rank-2

Euclidean Neural Networks are similar to convolutional neural networks, 
EXCEPT with special filters and tensor algebra!



Our unit test: Trained on 3D Tetris shapes in one orientation, 
these network can perfectly identify these shapes in any orientation.

TR
A

IN
TE

ST
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Chiral
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Applications

Laundry list…
● Inverting invariant representations
● Molecular dynamics
● Autoencoder for Geometry
● Determining missing data input through symmetry
● Electron density prediction for large molecules
● Molecule and crystal property prediction
● Conditional protein design
● ...



Predict ab initio forces for molecular dynamics
Preliminary results originally presented at 
APS March Meeting 2019.
Paper in progress.
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Testing on liquid water, Euclidean neural networks (Tensor-Field 
Molecular Dynamics) require less data to train than traditional 
networks to get state of the art results.

Data set from: [1] 
Zhang, L. et al. E. (2018). 
PRL, 120(14), 143001. 

Boris
Kozinsky

Simon 
Batzner 



Euclidean neural networks can manipulate geometry, 
which means they can be used for generative models such as autoencoders.



geometry features

To encode/decode, we have to be able to 
convert geometry into features and vice versa.
We do this via spherical harmonic projections.

Euclidean neural networks can manipulate geometry, 
which means they can be used for generative models such as autoencoders.
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Equivariant neural networks can learn to invert invariant representations.

Which can be used 
to recover geometry.

Network can predict 
spherical harmonic 
projection...

Invariant features + 
coordinate frame

ENN Peak finding

Josh 
Rackers

Thomas
Hardin



Pooling Pooling Unpooling Unpooling

We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris
Centers deleted

Centers deleted



Pooling Pooling Unpooling Unpooling

We can also build an autoencoder for geometry: e.g. Autoencoder on 3D Tetris



tensor field networks

Google Accelerated Science Team Stanford

Patrick 
Riley

Steve 
Kearnes

Nate 
Thomas

Lusann 
Yang

Kai 
Kohlhoff

Li
Li

developers of e3nn
(and atomic architects)

Mario Geiger Ben Miller Tess SmidtKoctiantyn 
Lapchevskyi



Euclidean neural networks operate on 
points/voxels and have symmetries of E(3).
● The inputs and outputs of our network are 

geometry and geometric tensors. 
● Convolutional filters are built from spherical 

harmonics with a learned radial function.
● All network operations are compatible with 

geometric tensor algebra.

We expect these networks to be generally useful 
for physics, chemistry, and geometry.

So far these networks have learned efficient 
molecular dynamics models and can learn to 
recursively encode and decode geometry.

Reach out to me if you are interested and/or 
have any questions!
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Tess Smidt
tsmidt@lbl.gov

e3nn Code (PyTorch):
http://github.com/e3nn/e3nn

e3nn_tutorial
https://blondegeek.github.io/e3nn_tutorial/

Tensor Field Networks
(arXiv:1802.08219)

3D Steerable CNNs
(arXiv:1807.02547)

https://blondegeek.github.io/e3nn_tutorial/


Calling in backup (slides)!

44
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Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution
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Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
(arXiv:1802.08219)
Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley

Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlinearity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution

Tensor field networks + 3D steerable CNNs 
= Euclidean neural networks (e3nn)



Let g be a 3d 
rotation matrix.

a-1 +a0 +a1

=

D is the Wigner-D matrix. 
It has shape                                
and is a function of g.

Spherical harmonics of a given L transform together under rotation.

g

47

b-1 +b0 +b1

D
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H         -0.21463        0.97837        0.33136
C         -0.38325        0.66317       -0.70334
C         -1.57552        0.03829       -1.05450
H         -2.34514       -0.13834       -0.29630
C         -1.78983       -0.36233       -2.36935
H         -2.72799       -0.85413       -2.64566
C         -0.81200       -0.13809       -3.33310
H         -0.98066       -0.45335       -4.36774
C          0.38026        0.48673       -2.98192
H          1.14976        0.66307       -3.74025
C          0.59460        0.88737       -1.66708
H          1.53276        1.37906       -1.39070

Approach 1: 
It doesn’t matter! It’s deep 
learning! Throw all your 
data at the problem and 
see what you get!

Approach 3: 
If there’s no model that 
naturally handles 
coordinates, 
we will make one.

Coordinates are most 
general, but sensitive to 
translations and rotations.

Approach 2: 
Convert your data to 
invariant representations so 
the neural network can’t 
possibly mess it up.

👍�� ��

How do we represent geometric data with neural networks (inputs / outputs)?



Convolve

Bloom
Make points to cluster

Symmetric Cluster
Cluster bloomed points

Combine 
Convolve with point origins of 

cluster members

Geometry

N
ew

 G
eom

etry 

How to encode (Pooling layer). Recursively convert geometry to features.



1st

2nd

Convolve

Bloom
Make new points

Cluster 
Merge duplicate points

Combine 
Convolve with origin point

of new points

Geometry

N
ew

 G
eom

etry 

How to decode (Unpooling layer). Recursively convert features to geometry.
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The outputs of the network must have equal or higher symmetry than the inputs.
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The outputs of the network must have equal or higher symmetry than the inputs.

Input is geometry with 
trivial feature.
([1.0] on each point)

Output (after training) is “blob” 
(linear combination of spherical 
harmonics) with maximum at 
new point location.  
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The outputs of the network must have equal or higher symmetry than the inputs.

Network is unable to learn task. 
“Blob” is not overlapping with 
target (orange points).Output (after training) is “blob” 

(linear combination of spherical 
harmonics) with maximum at 
new point location.  

Input is geometry with 
trivial feature.
([1.0] on each point)
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✓ ✗
The outputs of the network must have equal or higher symmetry than the inputs.

D2h ￫ D4h D4h ￫ D2h
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✓ ✗ ✓
The outputs of the network must have equal or higher symmetry than the inputs.

Add additional, 
anisotropic 
information to all 
points to differentiate  
x vs. y.

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html
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✓ ✗ ✓
The outputs of the network must have equal or higher symmetry than the inputs.

Add additional, 
anisotropic 
information to all 
points to differentiate  
x vs. y.

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html
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✓ ✗ ✓
The outputs of the network must have equal or higher symmetry than the inputs.

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

Learns to add 
additional, 
anisotropic 
information to all 
points to differentiate  
x vs. y.

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html


58

✓ ✗ ✓
The outputs of the network must have equal or higher symmetry than the inputs.

Learns to add 
additional, 
anisotropic 
information to all 
points to differentiate  
x vs. y.

Physics plays by the same rules! Physical processes must choose from energetically 
degenerate options to “break symmetry”.
https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html

https://blondegeek.github.io/e3nn_tutorial/simple_tasks_and_symmetry.html
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Discrete geometry Discrete geometry

Reduce 
geometry to 
single point.

Create 
geometry from 
single point.

We want to convert geometric information (3D coordinates of atomic positions) 
into features on a trivial geometry (a single point)
and back again.

Single point with continuous
latent representation
(N dimensional vector)
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Reduce 
geometry to 
single point.

Create 
geometry from 
single point.

Atomic structures are 
hierarchical and can be 
constructed from 
recurring geometric 
motifs. 

We want to convert geometric information (3D coordinates of atomic positions) 
into features on a trivial geometry (a single point)
and back again.

Discrete geometry Discrete geometry
Single point with continuous
latent representation
(N dimensional vector)
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Reduce 
geometry to 
single point.

Create 
geometry from 
single point.

+ Encode geometry
+ Encode hierarchy

(Need to do this in a recursive manner)

We want to convert geometric information (3D coordinates of atomic positions) 
into features on a trivial geometry (a single point)
and back again.

Discrete geometry Discrete geometry
Single point with continuous
latent representation
(N dimensional vector)

Atomic structures are 
hierarchical and can be 
constructed from 
recurring geometric 
motifs. 

+ Decode geometry
+ Decode hierarchy



To autoencode, we have to be able to convert 
geometry into features and vice versa.
We do this via spherical harmonic projections.
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To be rotation-equivariant means that we can rotate our inputs 
OR rotate our outputs and we get the same answer (for every operation).

Layerin outRot

Layerin outRot=



For L=1 ⇨ L=1, the filters will be a learned, radially-dependent linear 
combinations of the L = 0, 1, and 2 spherical harmonics.
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L=2

Random filters for  
L=1 ⇨ L=1… 
(3 in L=1 channels by 
 3 out L=1 channels) 

… as a function of 
increasing r.
Time showing filter for 
varying r, where
0 ≤ r ≤ rmax

.

(+ / –)
Radial distance is 
magnitude 
as a function of 
angle
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Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

m m

m m

m m

a.

b.

c.
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m m

m m

m m

a.

b.

c.

✓

✗

✗

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?
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m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?
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m m

m m

m m

a.

b.

c.

✓

✗

✗

m 2m

m m
g

Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?
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Predictions for Oh symmetry
Ground Truth

Prediction of 
network trained 
with symmetry 
breaking input 
and given 
symmetry 
breaking input 
along z.

Prediction of 
network trained 
with symmetry 
breaking input 
but given trivial 
input 
(single scalar).

Superposition of 6 
rotationally 
degenerate solutions.


